
Action Signatures and Finite-State Variations

Tim Fernando
School of Computer Science and Statistics

Trinity College Dublin, Ireland
Tim.Fernando@tcd.ie

Abstract

Finite fragments of action signatures from Gel-
fond and Lifschitz (1998) are modified for use
as bounded granularities for natural language
semantics, subject to variation. Strings formed
from these signatures are expanded to finite-
state representations, which are compared with
action languages in the tradition of Gelfond
and Lifschitz.

1 Introduction

To characterise actions as labels on transitions be-
tween states which assign values to fluents, a num-
ber of definitions are collected in Gelfond and Lif-
schitz (1998). These apply to a range of action
languages shaped by logic programming, the idea
being that “a high-level action language is used as a
front end for a logic programming system descrip-
tion” (Inclezan and Gelfond, 2016, page 189). That
said, an instance of an action language predating
logic programming can be found in Kleene (1956),
where finite automata were introduced to represent
events in neural nets from McCulloch and Pitts
(1943). Those automata were subsequently simpli-
fied in Rabin and Scott (1959), a paper on which
textbook presentations of finite automata are based
(and singled out in its authors’ 1976 Turing Award
citation). As fruitful as that simplification has been,
it leaves out two ingredients from Kleene (1956)
that link the automata there not only to McCulloch-
Pitts neurons but also to action languages, viz. in-
ner cells and input cells. From these cells spring
fluents, values and (elementary) actions that make
up an action signature in Gelfond and Lifschitz
(1998). Given an action signature, Gelfond and Lif-
schitz define transition systems from which chains
of transitions are formed, called histories.

Skipping over transition systems, the present
paper approximates histories with strings, adopt-
ing the perspective of grammatical inference (e.g.,

action language institution finite/regular
action signature Σ ∈ Sign (A, V)
transition system Mod(Σ) set of strings

history Σ-model string
axiom, query Σ-sentence expression

Table 1: Between Gelfond and Lifschitz (1998) and
Goguen and Burstall (1992) via Kleene (1956)

Heinz and Sempere, 2016; de la Higuera, 2010) to
view strings as (known) data points to be explained
by (unknown) automata (essential components of
which include transitions). Applied to linguistic
semantics, the intuition is that an episodic report
such as

(1) Facebook bought Instagram

is less problematic (semantically) than a generic
claim such as

(2) Facebook spreads lies

(e.g., Carlson, 1995). (1) describes a particular
event that can be located in the timeline (and rep-
resented as a string; e.g., Fernando, 2015), while
(2) describes multiple events spread over time and
arguably some causal complex leading to these
events. But are automata suitable causal structures?
The hypothesis explored here is that if the granu-
larity is bounded, finite automata provide useful
approximations that can be refined and elaborated
in various directions.

Table 1 outlines how this hypothesis is explored
below. Bounded granularity is understood as a
finite vocabulary (A, V) of acts and fluent-value
pairs, collected in a category Sign of signatures
Σ, indexing a set Mod(Σ) of Σ-models and a set
Sen(Σ) of Σ-sentences in a logical system called
an institution (Goguen and Burstall, 1992), head-
ing the middle column of Table 1. Exactly what

correspondences to read from Table 1 will take up
the entire paper to explain. To reduce disappoint-
ment, certain remarks are in order now. The term
action language in the leftmost column of Table 1
(and throughout this paper) is meant in the narrow
sense of Gelfond and Lifschitz (1998); no attempt
is made to cover all the various approaches that
build on labelled transitions (e.g., dynamic logic,
process algebras, Markov decision processes and
variants). The middle and rightmost columns of Ta-
ble 1 are connected in Fernando (2022) by notions
of

transition signature Σ, Σ-strip and X-projection

which the present work tailors to finite pieces
(A, V) of a set Act of acts and a set-valued function
Val whose domain, dom(Val), consists of variables
that acts can affect.1 Alongside a certain function

af : Act→ 2dom(Val)

mapping an act e to the set af(e) of variables that e
can affect, the pair (Act,Val) defines an institution
that can be contrasted with Table 1’s leftmost col-
umn. The function af aids grammatical inference,
generalizing

a string up to an automaton (language),

rather than particularizing

a transition system down to a history.

This shift in perspective (from the left to right
columns of Table 1) treats transitions shaped by the
preconditions and effects of acts more as a problem
to be tackled with strings of refinable granularity,
and less as contextual assumptions to be tested by
extracting certain histories from them.

We start in section 2 by drawing out action sig-
natures implicit in Kleene (1956) and elsewhere.
Linguistic interest in states (e.g., the aspect hypoth-
esis from Dowty (1979, page 71)) motivates the
formation in section 3 of strings that trace histories
(pairing states with actions). To step beyond any
particular string, a category of signatures is fleshed
out in section 4, based on a choice of Act and Val,
and an institution built around that category with
the help of af.

2 Finite-state action signatures

Transitions q a→ q′ that a finite automaton under-
goes from state q to q′ labeled by the symbol a arise

1A companion to this paper, Fernando (2022) provides
motivation from natural language inference and knowledge
graphs, and also is perhaps best read before section 4 below.

Kleene (1956) Gelfond and Lifschitz (1998)
inner cellMi fluent ∈ F
input cell Ni elementary action ∈ E

Table 2: Sub-symbolic and symbolic

in Kleene (1956) from k input cells N1, . . . ,Nk

and m inner cellsM1, . . . ,Mm as follows

(i) a symbol a = (b1, . . . , bk) specifies a value bi
for each input cell Ni

(ii) a state q = (v1, . . . , vm) specifies a value vi
for each inner cellMi

(iii) a transition relation a→ combines m simpler
relations a→1, . . . ,

a→m

(v1, . . . , vm)
a→ (v′1, . . . , v

′
m) ⇐⇒

(v1, . . . , vm)
a→i v

′
i for 1 ≤ i ≤ m

where (v1, . . . , vm)
a→i v

′
i means

values v1, . . . , vm forM1, . . . ,Mm and
a for (N1, . . . ,Nk) cause the value of
Mi to become v′i

in accordance with neural activation laws (in-
volving thesholds and two types of connec-
tions, inhibitory and excitatory, in McCulloch
and Pitts (1943), or in the case of perceptrons,
weights, biases and activation functions).

The parameter m (specifying the number of inner
cells) comes in Kleene (1956) with an m-tuple
(s1, . . . , sm) indicating the number si of values an
inner cellMi can take. Each input cellNi is under-
stood to take one of two values (firing or not), lead-
ing to 2k symbols (b1, . . . , bk) from k input cells,
alongside

∏m
i=1 si states (v1, . . . , vm) from the m

inner cells. Assuming s1 = s2 = · · · = sm = s,
a triple (k,m, s) induces an action signature, as
defined in Gelfond and Lifschitz (1998), where

(i) an action is a subset of the full set of k input
cells

(ii) a fluent is one of m inner cells that can take
one of s many values.

To be sure, the two sides of Table 2 are different
enterprises. An inner cell Mi and input cell Ni

are ingredients in a representation of a McCulloch-
Pitts neural net; a fluent such as dead(adolf) and
action such as kill(adolf) belong to “formal mod-
els of parts of the natural language that are used

for talking about the effects of actions” (Gelfond
and Lifschitz, 1998). The subsymbolic|symbolic
divide here is real; each side has its own concerns
and methods. But to understand (if not reconcile)
their differences, it is helpful to consider what they
have in common. It is noteworthy that the finite-
state developments considered below fall squarely
within the logical tradition, involving bits of ab-
stract model theory served up in Gelfond and Lifs-
chitz (1998) under the notion of an action signature.

The distribution of a transition (v1, . . . , vm)
a→

(v′1, . . . , v
′
m) between m transitions

(v1, . . . , vm)
a→i v

′
i for 1 ≤ i ≤ m

in Kleene (1956) can be sharpened to leave out any
inner cell or input cell that does not feed into the
inner cellMi described by a→i. (There is consid-
erable interest in neural networks that are not fully
recurrent.) Such niceties are brushed aside in the
“black box” perspective adopted in Rabin and Scott
(1959), where

The internal workings of an automaton will not

be analyzed too deeply . . . The definition of the

internal structure must be general enough to cover

all conceivable machines, but it need not involve

itself with problems of circuitry. . . . we need

not consider all the intermediate states that the

machine passes through but only those directly

preceding the reading of a symbol. [pp 115–116]

Nor is a symbol assumed in Rabin and Scott (1959)
to have any of the structure that it has in Kleene
(1956), as a set of firing input cells.

A symbol a labelling a transition a→ appears also
as a set in Gelfond and Lifschitz (1998), where it
is a subset a ⊆ E of the set E of elementary ac-
tions, and in the S-languages of Durand and Schwer
(2008), which consist of strings of non-empty sets.
Interval relations from Allen (1983) widely used
for temporal annotations of events (Pustejovsky
et al., 2010) can be represented in Durand and
Schwer (2008) as strings that mark out the left
and right borders, li and ri, of an interval i. For
instance, the relation meet(i, i′) of an interval i
abutting i′ is representable as the string

li ri, li′ ri′ (1)

consisting of 3 symbols, each boxed (rather than
enclosed in braces {, }) to reinforce the comic strip
reading of the string. As an elementary action, li

corresponds to BECOME(i) in Dowty (1979) or in
Pustejovsky (1991) to a transition from not-i to i.
Rather than burying an interval i in points li and
ri in (1), we can bring i out as a fluent that can go
into a box in

i i′ (2)

for a proper treatment of intervals i, i′ (rather than
points) as “primitive” (Allen, 1983, page 834).2

The significance of fluents in Knowledge Represen-
tation has been recognized since John McCarthy
borrowed the term from Newton in the early days
of AI. But as aspects of states that are regarded
as internal in both Kleene (1956) and Rabin and
Scott (1959), fluents do not ordinarily appear in the
strings accepted by a finite automaton unless a spe-
cial effort is made to ensure that they do so. Such
an effort is described in the next section, on the un-
derstanding that fluents are the “stative predicates”
on which Dowty (1979), among others, builds his
aspectual calculus (Fernando, 2015, 2019).

3 From histories to strings

Given a set A of actions a labelling transitions
a→ ⊆ Q × Q between states in Q, a history is a

sequence q0, a1, q1, a2, . . . , an, qn such that

qi−1
ai→ qi for 1 ≤ i ≤ n

(Gelfond and Lifschitz, 1998). From the previous
section, string (1), li ri, li′ ri′ , focuses on the
action labels in the transitions

q0

li
→ q1

ri, li′
→ q2

ri′
→ q3

while (2), i i′ , focuses on the states
q0, q1, q2, q3, saying the (propositional) fluent i
holds at q1, and fluent i′ at q2. Let us refer to the
underlying action signature here as

Example S. For the S-language representation
of Allen interval relations between i and i′, let
F = {i, i′}, E = {li, ri, li′ , ri′} (with A ⊆ 2E),
V = {1, 0} (for propositional fluents).

Next, let us see how li ri, li′ ri′ and i i′

emerge naturally from the string

li i, ri, li′ i′, ri′ (3)

2Strings such as (2) are applied to temporal annotation in
Woods and Fernando (2018), and may have more than one flu-
ent in a box, as in the representation i, i′ of equal(i, i′).

with the help of a few definitions. Given a string
s = α1 · · ·αn of sets αi and a set X , let

(i) the vocabulary voc(s) of s be
⋃n

i=1 αi, and

(ii) theX-reduct ρX(s) of s be s intersected com-
ponentwise with X

ρX(α1 · · ·αn) = (α1 ∩X) · · · (αn ∩X).

For example, if s is li ri, li′ ri′ then

voc(s) = {li, ri, li′ , ri′} and ρ{ri}(s) = ri .

Although it clashes with conventions in the action
language literature, the use of the term “reduct”
here follows established model-theoretic practice,
which applies to strings, understood as models of
predicate logic with a binary relation symbol <̇
on string positions, and unary relation symbols Pu

specifying the contents of string positions. More
precisely, a string s = α1 · · ·αn of subsets αi of
a set U is construed as the U -model MU (s) with
domain/universe D = {1, 2, . . . , n} interpreting <̇
as < restricted to D, and Pu as the set of i ∈ D
such that u ∈ αi, with the effect that

Pu(i) says: u occurs at string position i

for every u ∈ U .3 Under this construal, the X-
model MX(ρX(s))-model is the U -model MU (s)
with Pu restricted to u ∈ X (making it the ({<̇} ∪
{Pu}u∈X)-reduct in the usual model-theoretic
sense), and regular languages over the alphabet 2X

are the sets of strings definable in MSOX , Monadic
Second-Order Logic with unary predicates Pu from
u ∈ X (a slight variant of a fundamental theorem
due to Büchi, Elgot and Trakhtenbrot; e.g., Libkin,
2004, Theorem 7.21).

A reduct ρX(s) of s keeps the length of s, leav-
ing the domain of the corresponding model as is.
But as each u ∈ voc(s) \ X is dropped from
voc(ρX(s)), it is not surprising that compressing
ρX(s) may be in order. This is the case in Durand
and Schwer (2008), where an S-word is a string of
non-empty sets. To ensure that the X-projection
dX(s) of an S-word s is still an S-word, every
occurrence of ∅ (appearing as 2 qua symbol) is
deleted from ρX(s) to form dX(s)

dX(s) := d2(ρX(s)) where d2 deletes 2.
3Forming unary predicates Pu from elements u of a sym-

bol α is “unconventional” (Vu et al., 2018), the custom being
to name unary predicates Pα after the string alphabet’s sym-
bols α in their entirety. This shift from actions a to elementary
actions u is consequential.

For example,

d{ri}(li ri, li′ ri′) = d2(ri) = ri .

But what about the representation of meet(i, i′) as
i i′ , which is not even an S-word?
It helps to understand what the deletion d2 of ∅

does to the states at either side of ∅→. Towards this
end, let us fix a function af : E → 2F specifying
the set af(e) ⊆ F of fluents that can be af fected by
an elementary action e. The obvious choice for af
in Example S is

af(lf) = af(rf) = {f} for every f ∈ F

as lf and rf designate the left and right borders of
f . In general, however, if we know nothing about
an elementary action e, we may set af(e) = F
to leave open the possibility that e can affect any
fluent.4 What effect an elementary action can have
on a fluent is given by

(i) transitions a→ labelled by actions a, and

(ii) a function V : F×Q→ V that specifies the
value V(f, q) of a fluent f at state q, picturing
a state q as the set

Vq := {(f,V(f, q)) | f ∈ F}

of fluent-value pairs (f,V(f, q)).

Now, insofar as an action a ⊆ E can affect only
the fluents in

⋃
e∈a af(e), we can expect that

(†) whenever q a→ q′ and f ∈ F \
⋃

e∈a af(e),

V(f, q) = V(f, q′).

(†) says that for q a→ q′, any difference between
Vq and Vq′ can be confined to

⋃
e∈a af(e). So if⋃

a∈e af(e) = F, (†) is vacuously true. On the
other hand, for a = ∅,⋃

e∈∅

af(e) = ∅

and (†) reduces to

Vq = Vq′ whenever q ∅→ q′.

4In Kleene (1956) where

E = {N1, . . . ,Nk} and F = {M1, . . . ,Mm}

notice that Mi need not be put into af(Nj) if Nj is not among
the neural net’s inputs into Mi.

Thus, if all we can observe about a state q is its
set Vq of fluent-value pairs, then deleting q ∅→ q′

keeps us from seeing Vq a second time as Vq′ . In
other words, the compression d2(s) of a string s
of actions corresponds on the fluent side to block
compression bc, defined by induction on the length
of a string by

bc(s) := s if length(s) < 2

bc(αα′s) :=

{
bc(α′s) if α = α′

αbc(α′s) otherwise

(Fernando, 2015, §3.1). For example,

bc(ρ{i}(i i′)) = bc(i) = i .

In general, bc removes stutters αα, just as d2 re-
moves 2.

So far, we have focused on propositional fluents,
with value set V = {1, 0}. A more refined analysis
of Example S that extends readily to any finite
number of intervals (beyond i, i′) can be given with
more than two values. To prepare the ground for
this, let us define a string hV of sets from a history
h and a function V : F×Q→ V as follows. Given
a history

h = q0, a1, q1, a2, . . . , an, qn

let hV be the string α0α1 · · ·αn of n+ 1 sets,

αi := Vqi ∪ ai+1 for 0 ≤ i < n

and αn := Vqn . For the particular history h from
the transitions

q0

li
→ q1

ri, li′
→ q2

ri′
→ q3

and the function V described by i i′ (mapping
(i, q1) and (i′, q2) to 1 and all other relevant fluent-
state pairs to 0), the string hV is α0α1α2α3 where

α0α1 = (i, 0), (i′, 0), li (i, 1), (i′, 0), ri, li′

α2α3 = (i, 0), (i′, 1), ri′ (i, 0), (i′, 0)

abbreviated in (3) to li i, ri, li′ i′, ri′ by short-
ening any fluent-value pair (f, 1) to f , and leaving
out any fluent-value pair (f, 0). Now for the afore-
mentioned refinement of Example S, let us work
with the new set

V′ = {a, u, d}

ui, ui′

ai,ui′

di,ui′

di,ai′

ai,ai′

ui,ai′

ui,di′

ai,di′

di,di′

li

li′

li, li′

ri

ri, li′

li′

li′

ri′

ri′

li, ri′

li

li

ri

ri

ri′

ri, ri′

Figure 1: Allen interval relations between i and i′

of values: a for alive, u for unborn and d for dead.
The point is to divide falsity 0 between u and d,
which we reinforce by rewriting 1 to a. This tweak
on Example S makes a state q equal to Vq, as illus-
trated in Figure 1, which for f ∈ {i, i′}, attaches

(i) uf to a state where the value of f is u, saying
f is unborn

(ii) af to a state where the value of f is a, saying
f is alive, and

(iii) df to a state where the value of f is d, saying
f is dead.

If the fluent value pair (f, v) is written vf , the blue
states and red actions in Figure 1 pick out a history
h with hV equal to

ui,ui′ , li ai,ui, ri, li′ di,ai′ , ri′ di,di′

corresponding to (3), li i, ri, li′ i′, ri′ . We can
capture Russell-Wiener event structures (Kamp and
Reyle, 1993, pages 667–674) by generalizing from
F = {i, i′} to any set F, keeping

af(lf) = af(rf) = {f} for every f ∈ F.

It is convenient here to reformulate functions from
F to {u,a,d} as triples (U,A,D) of subsets of F
with U ∩ A = ∅ and D = F \ (U ∪ A). We step
from the all-unborn state (F, ∅, ∅) to the all-dead
state (∅, ∅,F) by transitions

(U,A,D) ;F (U ′, A′, D′)

which hold precisely if

U ′ ⊆ U and A 6= A′ and D ⊆ D′ ⊆ A ∪D

as prescribed by the action

{lf | f ∈ U \ U ′} ∪ {rf | f ∈ D′ \D} (4)

which is non-empty (since A 6= A′). Labeling ;F

with the action (4) yields Figure 1 for F = {i, i′}.

4 Signature refinements and elaborations

Having represented histories in the previous sec-
tion by strings formed from material supplied by an
action signature, we now modify the notion of an
action signature slightly to form strings without re-
lying on histories or transition systems. Signalling
this shift, we shorten elementary actions to acts,
and speak of variables instead of fluents. Each
variable x comes with a set Val(x) of values over
which x can range (making the domain of Val the
set of variables), and every act e comes with a set
af(e) ⊆ dom(Val) of variables that e can affect.
We assume all acts are drawn from some set Act
and that

(∗) no pair (x, v) is in Act with x ∈ dom(Val).

(∗) prevents any act from being confused with a
variable instantiation when forming strings (as in
the previous section) from sets of acts and variable
instantiations.

To bound the granularity of a signature, let us
define a fin-blurring of Val to be a function V
whose domain is a finite subset of Val, mapping
each variable x in its domain to a partition V (x)
of Val(x) into finitely many equivalence classes,
each smaller than Val(x). Rather than allowing a
completely undifferentiated V (x) = {Val(x)}, we
can leave x out of dom(V) and insist that there be
more than one equivalence class in each partition
specified by V .

Definition 1. An (Act,Val)-signature is a pair
(A, V) of a finite subsetA of Act and a fin-blurring
V of Val.

The bounded granularity of an (Act,Val)-signature
(A, V) rests on the finiteness required of

A, dom(V), and V (x), for x ∈ dom(X).

We say a fin-blurring V is refined by a fin-blurring
V ′, and write V � V ′, if V ′ is defined wherever V
is

dom(V) ⊆ dom(V ′)

and the partition V ′(x) refines V (x)

(∀v′ ∈ V ′(x))(∃v ∈ V (x)) v′ ⊆ v

for each x ∈ dom(V). The partial order � lifts
to (Act,Val)-signatures (A, V) and (A′, V ′) in the
obvious way

(A, V) � (A′, V ′) ⇐⇒ A ⊆ A′ and V � V ′.

The category SignAct,Val of (Act,Val)-signatures
is just the set of (Act,Val)-signatures, partially or-
dered by �.

Next, to elaborate on signature refinements, we
describe the semantic functor Mod that is con-
travariant on SignAct,Val. Given a fin-blurring V of
Val, a V -instantiation is a function g with the same
domain as V , picking out, for each x ∈ dom(V),
some equivalence class g(x) ∈ V (x).5 Bringing
in a finite subset A of Act, we define an (A, V)-
box to be the union a ∪ g of a subset a of A and a
V -instantiation g. (This union is disjoint by (∗).)
An (A, V)-model will be a string of (A, V)-boxes
constrained by the function af : Act → 2dom(Val)

specifying the set af(e) of variables that an act e
can affect. A variable is said to be unaffected by a
set a ⊆ Act of acts if it belongs to the set

af(a) := dom(Val) \
⋃
e∈a

af(e)

of variables that no act in a affects. For example,

af(∅) = dom(Val)

as there is no act in ∅ to affect a variable. Given
an (A, V)-box α and a variable x ∈ dom(α), let
us agree that the instantiation of x at α is g(x)
where g is the set difference α \A (recovering the
V -instantiation from the disjoint union). We say α
and α′ are x-equivalent and write α =x α

′ if x has
5Allowing the set of values to vary with the variable taking

these values leads to records; stepping to equivalence classes
of values leads to record types (e.g. Cooper and Ginzburg,
2015). Support for the move here to types can be found in the
following remarks by a leading figure in action languages

I used to start representation of knowledge rele-
vant to the problem with asking: What are the
objects of our domain? After some experience I
came to (now obvious) realization that the ques-
tion is wrong. It works for simple problems but
does not lead to general and elaboration toler-
ant solutions. The right question is What are the
SORTS of objects relevant to the domain and what
is the relationship between these sorts?

(Gelfond, 2015, slide 6 of 40).

the same instantiation at α and α′. To give af some
bite, we require that adjacent boxes in a string are
x-equivalent unless the boxes are linked by an act
affecting x.

Definition 2. Given an (Act,Val)-signature
(A, V), an (A, V)-strip is a string α1 · · ·αn of
(A, V)-boxes αi such that αn ∩ A = ∅ and for
all i such that 1 ≤ i < n, αi ∩A 6= ∅ and

αi =x αi+1 for each x ∈ af(αi ∩A).

Given (A, V) � (A′, V ′) in SignAct,Val, we
project a string of (A′, V ′)-boxes to a string of
(A, V)-boxes in two steps.

STEP 1: The (A, V)-coercion of a string α′1 · · ·α′n
of (A′, V ′)-boxes α′i is the componentwise (A, V)-
coercions of its (A′, V ′)-boxes α′i

(α′1 · · ·α′n)A,V := (α′1)A,V · · · (α′n)A,V

where the (A, V)-coercion of an (A′, V ′)-box a′ ∪
g′ is the (A, V)-box

(a′ ∪ g′)A,V := (a′ ∩A) ∪ g′V

formed from the union of a′ intersected with A and
the V -instantiation g′V mapping x ∈ dom(V) to
the unique V (x)-equivalence class blurring g′(x)

g′V (x) := unique c ∈ V (x) such that g′(x) ⊆ c

(which is well-defined since g′ is a V ’-instantiation
and V � V ′).

STEP 2: The (A, V)-compression of a string s of
(A, V)-boxes is the string

γA,V (s) :=

{
d2(s) if V = ∅
γA(s) otherwise

obtained from s by deleting either all occurrences
of the empty box 2 in s, in case V is empty, or else
all stutters αα disjoint from A

γA(s) := s if length(s) < 2

γA(αα′s) :=

γA(α′s) if α = α′ and

α ∩A = ∅
α γA(α′s) otherwise

making, for example, bc = γ∅.

Definition 3. Given (A, V) � (A′, V ′) and a
string s′ of (A′, V ′)-boxes, the (A, V)-projection
of s′, written κA,V (s′), is the (A, V)-compression
of the (A, V)-coercion of s′

κA,V (s′) := γA,V (s′A,V).

Definition 4. An (A, V)-model is the (A, V)-
projection of some (A′, V ′)-strip, where (A, V) �
(A′, V ′).

To understand the (A, V)-models from Defi-
nition 4 as models in the usual model-theoretic
sense, we can start by reformulating the notion
of an (A, V)-projection in terms of the transla-
tion scheme machinery in, for example, Makowsky
(2004). More notation is useful here. A V -pairing
(x, c) is an element of the set∑

V := {(x, c) | x ∈ dom(V) and c ∈ V (x)}

(from which V -instantiations are formed). The
vocabulary voc(A, V) of an (Act,Val)-signature
(A, V) is the union

voc(A, V) = A ∪
∑

V

of acts in A and V -pairings (again disjoint, by
(∗)). Step 1, the (A, V)-coercion, reduces the
MSO{u}-formula Pu(x), for every V -pairing u, to
the MSO∑

V ′-formula

P V,V ′
u (x) :=

∨
{Pu′(x) | u′ ∈ fV,V ′(u)}

formed from the set

fV,V ′(x, c) = {(x, c′) | c′ ⊆ c and c′ ∈ V ′(x)}

of V ′-pairings that refine the V -pairing (x, c) = u
(reversing the step from V ′-pairings to V -pairings
in g′V). For Step 2, let us form the MSO∑

V ′-
formula

ψV,V ′
u (x) := P V,V ′

u (x) ∧ ¬∃y(xSy ∧ P V,V ′
u (y))

saying u occurs at x (under the translation P V,V ′
u of

Pu into V ′-pairings) but not at its successor, where
S is the usual successor relation of <̇

xSy := x<̇y ∧ ¬∃z(x<̇z ∧ z<̇y).

The (A, V)-compression of the (A, V)-coercion
of a string s′ of (A′, V ′)-boxes restricts the do-
main/universe of Mvoc(A,V)(s

′) to string positions
x satisfying the disjunction

φA,V,V ′(x) := χA(x) ∨ χ′V,V ′(x) ∨
∃y(xSy ∧ χA(y))

where χA(x) says an act in A is done at x

χA(x) :=
∨
{Pe(x) | e ∈ A}

(corresponding to 2-removal d2) while χ′V,V ′(x)
says some V -pairing holds at x (under the V ′-
translations P V,V ′

u) but not at its successor

χ′V,V ′(x) :=
∨
{ψV,V ′

u (x) | u ∈
∑

V }

(corresponding to stutter-removal bc). It is conve-
nient here that <̇, rather than S, is primitive, as
κA,V (s) simply restricts <̇ to string positions sat-
isfying φA,V,V ′ , and similarly with Pu as P V,V ′

u ,
for every V -pairing u. Inasmuch as a string posi-
tion x represents time, and an act in A represents
a force for changing a V -pairing, the restriction
to the disjunction φA,V,V ′(x) says there is no time
(discernible in (A, V)) without force (inA) or with-
out change (in a V -pairing or, as expressed by the
third disjunct of φA,V,V ′(x), an act at the next box).

While the (A, V)-projection of an (A, V)-
strip does not alter the (A, V)-strip, the (A, V)-
projection of an (A′, V ′)-strip may fail to be an
(A, V)-strip if (A′, V ′) differs from (A, V). Given
an (A, V)-model s, ifA′ is a minimal subset of Act
such that s is the (A, V)-projection of an (A′, V ′)-
strip, then the set differenceA′\A contains assump-
tions that the function af uses to explain the tran-
sitions within s. This suggests that (A, V)-strips
are the most favoured (A, V)-models (carrying, as
it were, the greatest weight), and that every addi-
tion to A′ \ A makes the (A, V)-projection of an
(A′, V ′)-strip less plausible as an (A, V)-model.

That said, af(e) only says what variables an
act e can affect, and falls far short of specifying
how V -pairings under e change (or, as the Frame
Problem behind action languages spotlights, do
not change). Four different action description lan-
guages (STRIPS, A, B, C) are defined in Gelfond
and Lifschitz (1998) and many more in papers that
follow it, describing transition systems from which
histories and action query languages are defined,
filling out the leftmost column of Table 1. The
preconditions and effects of acts that action de-
scription languages build into a transition system
have yet to go into strings prescribed by Definition
4 as Σ-models, for Σ = (A, V). Given the mini-
mal information encoded in af (not to mention the
information lost when turning a history h into a
string hV6), Definition 4 is bound to overgenerate.
But this is where the bottom row of Table 1 en-
ters; every signature Σ comes with a set Sen(Σ) of
Σ-sentences and a relation |=Σ between Σ-models

6This is arguably in keeping with the black box perspective
of Rabin and Scott (1959).

and Σ-sentences, mapping a Σ-sentence ϕ into the
set

ModΣ(ϕ) := {M ∈Mod(Σ) |M |=Σ ϕ}

of Σ-models Σ-satisfying ϕ. For Sign given by
(Act,Val)-signatures (A, V), an (A, V)-sentence
can be an MSOvoc(A,V)-sentence, but any nota-
tional system for regular languages over the al-
phabet 2voc(A,V) (such as Kleene (1956)’s regular
expressions) suffices so that whenever (A, V) �
(A′, V ′), the inverse image

{s′ ∈Mod(A′, V ′) | κA,V (s′) ∈ModA,V (ϕ)}

of ModA,V (ϕ) under κA,V restricted to (A′, V ′)-
models can be expressed by an (A′, V ′)-sentence
〈A, V 〉ϕ as Mod(A′,V ′)(〈A, V 〉ϕ). The bicondi-
tional

s′ |=(A′,V ′) 〈A, V 〉ϕ ⇐⇒ κA,V (s′) |=(A,V) ϕ

then becomes the Satisfaction Condition charac-
teristic of an institution, where Sen maps a refine-
ment σ : (A, V) � (A′, V ′) covariantly to a func-
tion Sen(σ) sending ϕ to 〈A, V 〉ϕ, complementing
the contravariance of Mod(σ)(s′) = κA,V (s′).
Observe that the finiteness of voc(A, V) is cru-
cial for (A, V)-projections to be computable by
a finite-state transducer, making the inverse im-
age above regular, and ensuring the decidability
of entailments (from axioms to queries) given by
inclusions

ModΣ(axioms) ⊆ModΣ(queries).

(By contrast, recall that inclusions between say,
context-free languages is undecidable.)

There is a delicate interplay here between bound-
ing granularity (to keep representations finite-state
and entailments decidable) and accommodating the
open-endedness of meaning in natural language
by a Satisfaction Condition regulating refinements
marked by signature morphisms. Beyond the open-
ended modifications of events famously pointed
out in Davidson (1967) (calling for indefinite ad-
ditions to A and V alike), there are preconditions
and effects of acts to express through Sen . Given
the manner in which acts in A combine with V -
pairings for (A, V)-boxes, preconditions constrain
the alphabet of (A, V)-boxes, while effects con-
strain string positions and their successors. But
constraints over longer distances can also be ex-
pressed through Sen . And just as a signature can
be varied, so too can an institution.

References
J.F. Allen. 1983. Maintaining knowledge about tem-

poral intervals. Communications of the ACM,
26(11):832–843.

G.N. Carlson. 1995. Truth conditions of generic sen-
tences: Two contrasting views. In G.N. Carlson and
F.J. Pelletier, editors, The Generic Book, pages 224–
237. University of Chicago Press.

R. Cooper and J. Ginzburg. 2015. TTR for natural lan-
guage semantics. In S. Lappin and C. Fox, editors,
Handbook of Contemporary Semantic Theory, sec-
ond edition, pages 375–407. Wiley-Blackwell.

D. Davidson. 1967. The logical form of action sen-
tences. In N. Rescher, editor, The Logic of Decision
and Action, pages 81–95. University of Pittsburgh
Press.

D.R. Dowty. 1979. Word Meaning and Montague
Grammar. Reidel.

I.A. Durand and S.R. Schwer. 2008. A tool for rea-
soning about qualitative temporal information: the
theory of S-languages with a Lisp implementation.
J. Univers. Comput. Sci., 14(20):3282–3306.

T. Fernando. 2015. The semantics of tense and as-
pect: a finite-state perspective. In S. Lappin and
C. Fox, editors, Handbook of Contemporary Seman-
tic Theory, second edition, pages 203–236. Wiley-
Blackwell.

T. Fernando. 2019. Projecting temporal properties,
events and actions. In Proc 13th International Con-
ference on Computational Semantics, pages 1–12.

T. Fernando. 2022. Strings from neurons to language.
In Proc. Natural Logic meets Machine Learning III.
ESSLLI 2022 workshop, Galway (Ireland).

M. Gelfond. 2015. Modular action language ALM.
Slides for a Knowledge Representation seminar
available at http://redwood.cs.ttu.edu/
∼mgelfond/TALKS/alm.pdf.

M. Gelfond and V. Lifschitz. 1998. Action languages.
Linköping Electronic Articles in Computer and In-
formation Science, 3(16).

J.A. Goguen and R.M. Burstall. 1992. Institutions: Ab-
stract model theory for specification and program-
ming. Journal of the ACM, 39(1):95–146.

J. Heinz and J. Sempere, editors. 2016. Topics in Gram-
matical Inference. Springer-Verlag.

C. de la Higuera. 2010. Grammatical Inference: Learn-
ing Automata and Grammars. Cambridge Univer-
sity Press.

D. Inclezan and M. Gelfond. 2016. Modular action lan-
guage. Theory and Practice of Logic Programming,
16:189–235.

H. Kamp and U. Reyle. 1993. From Discourse to Logic.
Kluwer Academic Publishers.

S.C. Kleene. 1956. Representation of events in nerve
nets and finite automata. In C. Shannon and
J. McCarthy, editors, Automata Studies, pages 3–41.
Princeton University Press.

L. Libkin. 2004. Elements of Finite Model Theory.
Springer.

J.A. Makowsky. 2004. Algorithmic uses of the
Feferman-Vaught theorem. Annals of Pure and Ap-
plied Logic, 126:159–213.

W. S. McCulloch and W. H. Pitts. 1943. A logical cal-
culus of the ideas immanent in nervous activity. Bull.
Math. Biophys., 5:115–133.

J. Pustejovsky. 1991. The syntax of event structure.
Cognition, 41:47–81.

J. Pustejovsky, K. Lee, H. Bunt, and L. Romary. 2010.
ISO-TimeML: An international standard for seman-
tic annotation. In Proc 7th International Conference
on Language Resources and Evaluation (LREC’10),
pages 394–397.

M.O. Rabin and D.S. Scott. 1959. Finite automata and
their decision problems. IBM Journal of Research
and Development, 3:114–125.

M.H. Vu, A. Zehfroosh, K. Strother-Garcia, M. Sebok,
J. Heinz, and H.G. Tanner. 2018. Statistical rela-
tional learning with unconventional string models.
Frontiers in Robotics & AI, 5.

D. Woods and T. Fernando. 2018. Improving string
processing for temporal relations. In Proc 14th Joint
ISO-ACL Workshop on Interoperable Semantic An-
notation (ISA-14), pages 76–86.

