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Abstract

This work focuses on the automatic identifi-
cation of action concepts, performed through
machine learning algorithms and applied to a
linguistic dataset derived from the IMAGACT
ontology of actions. IMAGACT contains a set
of 1,010 actions, represented by video scenes,
and enriched with linguistic data in several lan-
guages. In particular each scene is linked to
the full set of verbs that can be used to refer
to the depicted action in every considered lan-
guage. Starting from these data, automatic clus-
tering of scenes has been performed using the
linked lexical items as a feature set, following
the idea that similar actions can be referred to
by a similar group of verbs. Hierarchical ag-
glomerative clustering has been performed with
the aim of setting up an evaluation campaign
and creating a gold standard of validated clus-
ters. Then, a semi-supervised method based on
Affinity Propagation has been trained on these
data. An evaluation of clusters coherence has
been performed, reporting promising results.
An interactive web version of the action map
has been also created, to allow users to browse
the clusters of videos.

1 Introduction

IMAGACT (Moneglia et al., 2014) is a multilin-
gual ontology of action consisting in a fine-grained
categorization of action concepts, each represented
by prototypes in the form of recorded videos and
3D animations. Action concepts have been identi-
fied though the annotation of Italian and English
corpora of spontaneous speech (Moneglia et al.,
2012). Starting from the occurrences of verbs refer-
ring to physical actions, the set of different Action
concepts to which each verb can extend has been
retrieved. Conversely, the set of verbs which are
able to refer to the same Action Concept has also
been identified (Panunzi et al., 2018). Reconcil-
ing the annotation derived from the two language
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corpora, a set of 1,010 scenes has been generated,
each one representing a prototype for an Action
Concept. This set of scenes encompass the actions
commonly referred to in everyday language usage.

The insertion of new languages beyond Italian
and English has been obtained exploiting the Com-
petence Based Extension (CBE) technique (Brown
et al., 2014). Using a method of ostensive defi-
nitions, informants of different origins have been
asked to list all the verbs in their mother-tongue
that can refer to the action depicted in a given pro-
totypical scene. At present, IMAGACT contains
16 fully mapped languages, and several others are
underway. The visual prototypes are therefore rele-
vant for cross-linguistic reference.

However, in IMAGACT the relation among pro-
totypes remains undefined. They can only be linked
by linguistic correlations expressed by action verbs
referring to them from the perspective of a sin-
gle language (Table 1). How similar actions can
be grouped into more general Action Types and
how near or far Action Types are in the topolog-
ical space of actions is not defined, and should
be in principle independent from the perspective
of a single language. For instance, in Table 1 ac-
tions (a), (b) and (c), may be considered similar
from the perspective of English and Italian, since
all are in the extension of one general verb (put
and mettere, respectively), even though different
equivalent verbs (hang, spread, and lay) mark their
differential. However, this cannot be the case from
the perspective of Japanese which does not have
a single general verb extending to these 3 actions.
Moreover, even from the perspective of English,
we do not know whether (c) is more similar to (a)
and (b) or instead to (d), which shares with (c) the
equivalence with spread, while in Italian (c) and
(d) have no equivalence.

The basic strategy developed in this study is to
exploit the full set of cross-linguistic correlations



EN put X X X

EN lay X X

EN  hang X

EN spread X X
IT  mettere X X X

IT  spalmare X

IT  appendere X

IT  sparpagliare X
JP HMNT 5 (kekeru) X

P {1+ 5 (tsukeru) X

JP &< (oku) X

JP W53 % (chirabaru) X

Table 1: Verb-to-scene reference example.

of each prototype in IMAGACT to generate an on-
tological space where actions are clustered through
machine learning algorithms. This should avoid
bias from a single monolingual-centric approach,
but will be consistent with the idea that similar
actions can be referred to by a similar group of
verbs.

This paper follows a previous promising work
(Gregori et al., 2019) based on the Affinity Propaga-
tion algorithm which, despite the admirable results
achieved, remained unsupervised. The evaluation
of the resulting clusters is not trivial, since we need
to compare one speaker’s conceptual representation
with the average representation resulting from sum-
ming lexical information from multiple languages.
Our present goal is to set up a strategy for develop-
ing a gold standard of validated clusters of action
prototypes. In Section 2 the dataset settled to this
end will be illustrated. In Section 3 we will present
the strategy of using a HAC for grounding an evalu-
ation campaign, and we will outline how similarity
judgements have been obtained from informants
in a crowdsourcing infrastructure. In Section 4 the
results of a semi-supervised method based on Affin-
ity Propagation will be presented and evaluated in
terms of cluster coherence. We will finally show
the action map, which allows users to browse the
clusters of videos based on the algorithm results.

2 Dataset creation

Our dataset is created from the IMAGACT
database, using the same technique as the previ-
ous work (Gregori et al., 2019), but with signif-
icant updates to CBE data (action videos and re-
ferring verbs). The raw dataset is a binary matrix
C1010x 10572 With one row per video and one col-
umn per verb (belonging to 14 languages). Matrix
values are the assignments of verbs to videos made
by native speakers within the CBE annotation task:

1 if verb j refers to action i
Cij =
0 else

Matrix C' encodes the inter-linguistic lexical repre-
sentation of each video.

Table 2 shows the number of verbs assigned by
the CBE annotators for each language. It is impor-
tant to notice that the task has been performed on
the whole set of 1,010 scenes for each language,
and that the differences between the number of
verbs depend on various linguistic factors. Some
examples of verb-rich languages are: (a) Polish and
Serbian, in which perfective/imperfective forms are
lemmatized as different entries; (b) German, which
has particle-verb compositionality; (c) Spanish and
Portuguese, for which verbs belong to both Ameri-
can and European varieties.

An approximated matrix C’ is created from C,
by using Singular Value Decomposition (SVD) and
truncating to 300 dimensions. Dimensionality re-
duction allowed us to obtain a fixed-size feature



Language Verbs
Arabic (Syria) 571
Danish 646
English 673
French 669
German 990
Greek 631
Hindi 449
Italian 668
Japanese 736
Polish 1,192
Portuguese 776
Serbian 1,081
Spanish 735
Swedish 755
TOTAL 10,572

Table 2: Number of verbs per language.

space, and an approximate matrix that smooths
over language-specific semantic differences. C’
matrix has been used as a working dataset for the
current clustering task.

3 Hierarchical Agglomerative Clustering

The main issues in clustering the IMAGACT
dataset are:

* unknown number of clusters: in the previous
experiment (Gregori et al., 2019), 178 clusters
were automatically created, but here data and
method have changed, so we cannot impose a
set number of clusters;

* high potential variability in cluster size: given
that in every language there are general verbs
(that can refer to many videos) and specific
ones (that can refer to just one or few videos),
we can expect similar variability in cluster
size.

In this scenario, the Hierarchical Agglomerative
Clustering (henceforth, HAC) algorithm is a suit-
able choice: in fact, differently from other algo-
rithms (e.g. K-means), it does not require the pro-
grammer to preset the desired number of clusters,
and performs an unbiased grouping based only on
elements’ similarity. Elements’ closeness has been
computed through the cosine similarity measure.
Given a dataset with NV elements, HAC performs
the following steps:

1. The algorithm is initialized by creating one
cluster per element, resulting in IV clusters of
one element each;

2. At each step, the two nearest clusters are
merged; cluster distance is measured accord-
ing to a specified metric;

3. In the last step all the elements are merged
into one cluster.

A full run of HAC produces a wide set of possi-
ble clustering outputs, and a stopping criterion is
required to obtain a reasonable number of clusters.
To this aim, an automatic analysis and a manual
evaluation have been performed on the outputs.

3.1 Automatic evaluation with the silhouette
coefficient

The silhouette score (Rousseeuw, 1987) measures
tightness and separation of clusters resulting from
any method. This metric returns a value between
-1 and +1, with the following meaning:

* A score near 1 highlights strong tightness of
intra-cluster elements and a good inter-cluster
separation;

* A score near 0 represents highly overlapping
clusters;

¢ A score near -1 indicates that the elements are
assigned to the wrong clusters;

Silhouette coefficient SC (Kaufman and
Rousseeuw, 1990) extends the silhouette score to
an entire dataset. Automatic clusters analysis on
the current dataset has been performed by comput-
ing the SC for every possible number of clusters
that can be obtained at each step of the hierarchical
clustering algorithm. According to the algorithm,
the number of clusters obtained ranges from 1 to
1010 (that is the number of video instances). Figure
1 shows the SC' value for each number of clusters.

The plot clearly shows that the highest values of
SC are obtained with a number of clusters that is
in the middle, while SC' decreases rapidly if we
move towards the minimum or maximum number
of clusters. In particular we observe:

¢ SC > 0.30 with a number of clusters between
290 and 770;

¢ SC > 0.40 with a number of clusters between
415 and 589.
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Figure 1: Silhouette score for each number of clusters.

3.2 Manual evaluation with crowdsourced
similarity judgments

Results obtained with the silhouette coefficient are
easy to interpret and allow the creation of clusters
that are optimized for internal tightness and exter-
nal separation. What we still don’t know is whether
the clusters created actually make any sense for a
human. For this reason, we have set up a procedure
to collect human judgments and validate the clus-
tering results. A set of surveys has been designed
in order to determine to what extent clusters can be
grown preserving a perceived coherence.

Informants have been forewarned that the evalu-
ation of similarity among events is by definition a
vague task. It may regard features of different value,
such as non-essential attributes like the presence of
similar objects, the overall circumstance, the mood
of the performance or more abstract similarities
such as the goal of the action. The informant has
been explicitly asked to disregard superficial simi-
larities and to judge whether or not what happens
in the events under consideration is similar.

The procedure does not show the informant the
full set of scenes in a single viewing. This kind of
evaluation would be costly in terms of time, atten-
tion and reasoning capacity, since it would require
the simultaneous comparison of many possible sim-
ilarities in a large set of different scenes. To make
the evaluation procedure easier and more reliable
we implemented an incremental test which allows
the informant to build up his interpretation little by
little, starting from a simple similarity judgment be-
tween two scenes. The procedure runs as follows.

A set of 283 surveys has been created, each one
containing the chain of scenes obtained from the
clustering output. From the 283 surveys, the first
100 have been published (~35%), and 6 raters have

evaluated them. Finally, we have obtained 6 cutting
thresholds for each chain of videos. LimeSurvey',
an open-source online survey tool, has been used
to set up and submit the evaluation task.

The scenes belonging to each chain are presented
one by one to the human evaluator in order to
mimic the algorithm behaviour. The scenes are
ordered from the closest to the farthest, according
to the hierarchical clustering output.

Given a first pair of scenes produced by the sys-
tem, the informant is asked to choose among four
alternatives on a similarity scale, ranging from very
similar to different. What happens can be judged:

1. similar (can be gathered in a group of events
of the same kind);

2. quite similar (there are differences, but it can
be still considered an event of the same kind,
although in some sense peripheral);

3. quite different (some similarity with the group
can be seen, but it should be kept distinct);

4. different (no meaningful similarities).

A video with a rating of 1 or 2 fits well in the
cluster (and is colored green during the survey); a
video with 3 or 4 should be put outside the cluster
(and is colored red during the survey).

If the two scenes are considered events of the
same kind, the informant goes on with the test judg-
ing the similarity of other scenes (one by one) with
respect to what happens in the first pair. When three
subsequent scenes are judged different or quite dif-
ferent and are marked in red the test is interrupted.

Figure 2: Example of an evaluation survey.

For instance, in Figure 2 the three events in the
first row (in green) have been judged similar, while
the actions represented in the last two videos (in
red) have been excluded from the cluster.

"https://www.limesurvey.org/
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3.3 Results

A single threshold value has been computed for
each video chain, by averaging the ratings. A video
is considered to fit into the cluster if the mean of its
ratings is lower or equal to 2.5. Table 3 shows an
example of rating results for a survey with 6 videos
(QO0 to Q5), evaluated by 4 annotators (column
QOO0 reports the annotator ID). The mean value of
each column has also been reported to highlight the
cutting threshold: the first 4 videos have a mean
rating below 2.5, so they are similar enough to be
clustered together, while the last 2 videos have a
mean higher than 2.5, so are considered outside the
cluster.

Q00 Qo0 Q1 [ Q2| Q3 Q4 Q5
cc 1 3 3 3 3 3
st 3 3 3
Vs 2 1 1 1 4 4
Ig 1 3 3 3 3 3

mean | 1.25 | 2.25 | 2.5 | 2.25 | 3.25 | 3.25

Table 3: An example survey result: a chain of 6 videos
evaluated by 4 annotators.

In order to convert the results reported in the ex-
ample above (Table 3) into a stopping criterion for
the clustering algorithm, we can determine at which
steps of the algorithm a cluster contains exactly 4
videos. All that is needed to obtain this criterion is
to find the step at which the 4th video is added to
that cluster, and the step at which the 5th video is
added to that cluster: all the steps in between are
optimal stopping points for this example.

The range of optimal stopping points has been
computed for each of the 100 annotated surveys.
The optimal number of clusters is trivially com-
puted with the inversion of the previous list?. Re-
sults are displayed in Fig. 3.

Similarly to the silhouette values, the optimal
number of clusters is in the middle, and the correct-
ness rate quickly decreases if we move towards the
minimum or the maximum number of clusters. In
particular we observe:

¢ Correct clusters > 35 with a number of clus-
ters between 299 and 320, and between 344
and 870;

e Correct clusters > 45 with a number of clus-
ters between 543 and 552, and between 568
and 732.

Note that at step 1 there are N clusters, and at step N
there is 1 cluster.
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Figure 3: Graph of the number of best-fitting chains for
any number of clusters.

3.4 Optimal number of clusters estimation

Figure 4 summarizes the results:

* light green stripes show the ranges of clus-
ters number, reporting a relevant number of
correct clusters (more than 35), according to
human evaluation;

 dark green stripes show the ranges of clus-
ters number, reporting the highest number of
correct clusters (more than 45), according to
human evaluation;

* light purple stripes show the ranges of clus-
ters number, reporting a good silhouette coef-
ficient (SC > 0.30);

e dark purple stripes show the ranges of clus-
ters number, reporting the optimum silhouette
coefficient (SC' > 0.40).

Considering these results, along with the obvious
propensity to keep the number of clusters as small
as possible, it is possible to derive the following
parameter estimation:

* k = 543 is the optimal number of clusters,
reporting the highest SC' score and the highest
number of correct manual evaluations;

* k = 299 is still a good number of clusters
(high SC score and relevant percentage of
correctness), and offers a more compact rep-
resentation.

Finally, one of the two x values can be chosen
as threshold, depending on the purposes: precision
maximization, or reduced number of clusters.
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Figure 4: Good and optimal number of clusters, according to silhouette coefficient and manual annotation.

3.5 Agreement

Inter-annotator agreement has been measured with
Fleiss’ Kappa (Fleiss, 1971) on annotated data. In
particular, the agreement on the number of clusters
that are part of each chain was measured. Fleiss’
Kappa value among 6 annotators was computed for
each of the 100 surveys: excluding a few outliers,
agreement ranges between 0.25 and 0.5, with a
prevalence around 0.3 (Figure 5).

| mmm Agreement
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Figure 5: Inter-annotator agreement measured with
Fleiss’ Kappa on 6 annotators.

In addition to the Fleiss’ Kappa metric, Figure 6
shows a bar plot with the number of surveys with
different deviations from the optimal number of
clusters for each annotator. For example, the blue
bars (deviation = 0) show the number of surveys
for which the number of clusters belonging to the
chain is equal to the optimal number of clusters
(estimated by averaging raters’ judgments).

This figure gives a broader picture of the inter-
rater agreement, showing that, despite the exact
number of clusters in the chains not being widely
shared (average Fleiss’ Kappa is about 0.3), the size
of the clusters is near the optimum (with a deviation
of 0, 1 or 2 scenes) for most of the ratings.

Nonetheless, even after tuning, the accuracy of
hierarchical clustering is still low: even with the
optimal number of clusters (x = 543), more than
50% of the evaluated clusters does not match with
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Figure 6: Number of surveys with different deviations
from the optimal number of clusters for each annotator.

our gold standard derived from manual annotation.
This result suggests that HAC is not a good choice
to segment our dataset.

4 Informed Affinity Propagation
clustering

Despite these negative results, hierarchical cluster-
ing provides a way to set up an evaluation task, and
allowed us to create a gold standard, exploitable for
training a semi-supervised clustering algorithm.

An attempt to perform semi-supervised cluster-
ing has been made through the introduction of a
bias into the Affinity Propagation (henceforth, AP)
algorithm. AP can be tuned through a vector of
preferences, which adjusts the probability of each
data point being in the center of a cluster: if an ele-
ment has a higher preference value, it has a higher
probability of being near the centroid of a cluster.
Starting from our gold standard of 100 clusters, we
selected the scene of each cluster that is nearest
the cluster centroid. Then, we increased the pref-
erence value of these scenes and ran the AP. The
introduction of this bias is expected to enforce the
algorithm to perform a clustering that is closer to
our gold standard.

Figure 7 shows the clustering accuracy for differ-
ent values of the preference parameter>. Accuracy

3Preference values range between the minimum and the



is measured by comparing the automatic clustering
with the provided gold standard; we used Adjusted
Rand Index as our comparison metric.

The black line reports the accuracy of AP with a
uniform preference value for each element. Then,
we introduced a positive bias, by increasing the
preference on the 100 scenes that are near the cen-
troids of validated clusters (green line). Finally, we
performed a final test, penalizing the preference of
these 100 scenes (red line), to better appreciate the
impact of our bias.

Affinity Propagation Evaluation

0.78

Adjusted Rand Index

—— Constant Preferences
—— Centroids-boosted pref.
—— Centroids-penalized pref.

0.70 -

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Preference

Figure 7: Cluster correctness with different values of
preference parameter in AP.

Results clearly shows that the introduction of
a positive bias increases the matching with our
gold standard, while a negative bias reduces the
accuracy with respect to a default run with constant
preferences. Moreover, we estimated two constant
values of preference for unbiased scenes*:

e pref = —0.44: the algorithm generates 182
clusters; the Adjusted Rand Index is maxi-
mum;

* pref = —0.82: the algorithm generates 155
clusters; the Adjusted Rand Index is near the
maximum.

4.1 Voronoi diagram

In order to obtain a visual representation of clusters,
the following actions have been performed:

* centroids computation: centroids have been
computed for each group of scene vectors be-
longing to a cluster, by averaging their values;
one 300-dimensional vector per cluster has
been derived;

median of the dataset, as suggested by (Frey and Dueck, 2007).

“Biased scenes have the same preference value plus 1.0;
the results are nearly the same with higher or lower values.

* 2D representation of centroids: the t-SNE al-
gorithm has been applied to the centroids to
reduce the 300 dimensions to 2 dimensions,
thus obtaining one point per cluster;

* creation of a Voronoi diagram: the points have
been projected in a 2D space, and a Voronoi
diagram has been created, to display clusters
as spatial areas; one polygon per cluster has
been generated (Fig. 8).

This representation allows us to automatically
draw a picture of the space of events. Since the
proposed clustering involves videos, an HTML
representation of the Voronoi diagram has been
generated. This has made it possible to create an
interactive map, where a user can browse the dia-
gram and play the video elements®. Figure 8 shows
a screenshot of the map, which can be accessed®

online.

Figure 8: Voronoi diagram of clusters.

4.2 Clusters coherence evaluation

Clusters evaluation aims at verifying, firstly,
whether the clusters obtained are meaningful for
a human. Then, we can also verify whether the
benefit obtained by introducing a bias is local or
global, i.e. if the clusters with biased scenes are as
good as the others or not. Finally, we are interested
in verifying whether the error of the two runs of
the algorithm (with different preference values) is
similar or not.

Rather than a strict similarity among scenes, the
evaluation of the clusters produced by AP judges
their overall internal coherence. For each evaluated
cluster, the informant is asked to discard the scenes
which should not be grouped in the same cluster, if
any.

For instance, the cluster in figure 9 brings to-
gether a set of events in which the agent places

5In the diagram, the darker areas correspond to the clusters
with the higher number of scenes.

®http://lablita.it/app/imclust/
voronoi2.html
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Figure 9: An example of a generated cluster.

an object somewhere in different manners, but the
cluster also collects the parking of a car and other
scenes in which the subject places himself in a cer-
tain position. The informant found it odd to have
these last events in the cluster and decided that
they were not coherent (even though the general
English verb to put can be applied to all scenes, like
many other verbs at a cross-linguistic level; that is
probably the reason why the algorithm formed the
cluster).

Clusters coherence evaluation has been per-
formed by 5 raters on 120 clusters: 60 clusters be-
long to the output of AP with pref = —0.44, while
the other 60 are generated with pref = —0.82. In
both of these sets, 30 clusters contain a biased scene
and 30 clusters are unbiased.

For each cluster, we counted the relative number
of scenes that are evaluated as not coherent by each
annotator, i.e. the percentage of wrong scenes in
each cluster. Then, we computed the mean of these
values for the 5 annotators. Finally, the overall
mean has been derived for each of following subset
of 30 clusters:

* Average percentage of incoherent scenes in bi-
ased clusters created through AP with pref =
—0.44;

* Average percentage of incoherent scenes in
unbiased clusters created through AP with
pref = —0.44;

* Average percentage of incoherent scenes in bi-
ased clusters created through AP with pref =
—0.82;

* Average percentage of incoherent scenes in
unbiased clusters created through AP with
pref = —0.82;

Results are summarized in Table 4. The table
highlights that, on average, raters found 15% of
incoherent scenes in the biased clusters (i.e. the
clusters containing a scene with increased prefer-
ence value), independently of the global preference
value of AP. Conversely, the error measured on the
clusters with constant preference is higher and de-
pendent on the global preference value: 18% and
21% of incoherent scenes.

pref = —0.44 | pref = —0.82

Err. on bias 0.15 0.15

Err. on unbias 0.18 0.21

Table 4: Relative error measured on the perceived co-
herence of the clusters generated by AP.

We can derive that introducing a bias on the
basis of a gold standard leads to an accuracy im-
provement on AP, and the error can be estimated as
~15% of incoherent scenes in both the clusterings
(with 155 and 182 clusters). In addition to this, the
error on unbiased clusters is higher and not stable
in the two algorithm runs, meaning that a local bias
does not bring a global benefit.

5 Conclusions

We have presented our work on the automatic iden-
tification of action concepts exploiting lexical data
belonging to 14 languages, stored in the IMAGACT
multilingual ontology of action. The automatic
clustering procedure consisted in two main steps.
First we applied the HAC method obtaining nega-
tive results. Nevertheless, the evaluation campaign
was used to bootstrap a gold standard of validated
clusters, on which we trained a semi-supervised
method based on Affinity Propagation. The evalua-
tion of the cluster coherence of this second method
gave promising results, which must be further re-
fined in the forthcoming steps of our research.

References

Susan Brown, Gloria Gagliardi, and Massimo Moneglia.
2014. Imagact4all mapping spanish varieties onto



a corpus-based ontology of action. CHIMERA. Ro-
mance Corpora and Linguistic Studies, 1:91-135.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Brendan J Frey and Delbert Dueck. 2007. Clustering
by passing messages between data points. science,
315(5814):972-976.

Lorenzo Gregori, Rossella Varvara, and Andrea Amelio
Ravelli. 2019. Action type induction from multilin-
gual lexical features. Procesamiento del Lenguaje
Natural, 63:85-92.

Leonard Kaufman and Peter J Rousseeuw. 1990. Find-
ing groups in data; an introduction to cluster analysis.
Technical report, J. Wiley.

Massimo Moneglia, Susan Brown, Francesca Frontini,
Gloria Gagliardi, Fahad Khan, Monica Monachini,
and Alessandro Panunzi. 2014. The imagact visual
ontology. an extendable multilingual infrastructure
for the representation of lexical encoding of action.
In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland. European Language Resources
Association (ELRA).

Massimo Moneglia, Francesca Frontini, Gloria
Gagliardi, Irene Russo, Alessandro Panunzi, and
Monica Monachini. 2012. Imagact: deriving an ac-
tion ontology from spoken corpora. Proceedings of
the Eighth Joint ACL-1SO Workshop on Interoperable
Semantic Annotation (isa-8), pages 42—47.

Alessandro Panunzi, Massimo Moneglia, and Lorenzo
Gregori. 2018. Action identification and local equiv-
alence of action verbs: the annotation framework of
the imagact ontology. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018), Paris, France. Euro-
pean Language Resources Association (ELRA).

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53-65.



