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Abstract

Coined by Gibson, the notion of an affordance
has become an important problem in AI, be-
yond its original formulation in psychology.
Following both Gibson as well as Pustejovsky’s
notion of the telic affordance, we explore the
abilities of certain machine learning models to
learn how to group objects in terms of their
affordances, by training models to classify ob-
jects into different “grasp classes,” using both
3D meshes and human annotations. We train
two classifiers, one to predict which objects
are grasped similarly based on their geometries,
and one to predict which objects are grasped
similarly according to human annotations. We
find that there is no clear correspondence be-
tween the embedding spaces of the two classi-
fiers and hypothesize that this is due to the data
capturing fundamentally different distributions
of affordances with respect to objects, one rep-
resenting Gibsonian affordances, and the other,
telic affordances.

1 Introduction
J. J. Gibson introduced the concept of affordances
in 1977 to describe the functional and ecological
relationship between organisms and their environ-
ments (Gibson, 1977). To say an object “affords”
an action is to say that the object facilitates the ac-
tion being taken with it. Gibsonian affordances are
those behaviors afforded due to the physical object
structure, and can be directly perceived by animals.
Pustejovsky (2013) introduced the notion of a telic
affordance, or a behavior that is conventionalized
due to an object’s typical use or purpose.

Predicting affordances has proven to be a diffi-
cult task for artificial intelligence. Humans more
often learn about affordances (e.g., “cups contain
things,” “spoons are used for stirring”) by using
objects or watching them being used rather than
being told about or reading about them. Hence
this information is often absent from or sparsely

distributed in linguistic corpora. Tasks like human-
object interaction (HOI) or video action recognition
bear a more direct relation to affordances, but often
datasets for these tasks conflate an affordance with
any type of action that can be taken with an object,
rather than a specific relation denoting what the
object offers the agent a la Gibson.

The problem is also important for commonsense
reasoning about actions. Word embedding-based
approaches show low vector similarity between
object words and action words, even when those
actions are commonly associated with objects (e.g.,
“stir” and “spoon”). Encoded knowledge of habitats
and affordances has been shown to be useful, even
over small sample sizes, at determining similarities
between objects based on their known behaviors,
and at acquiring partial information about novel
objects (Pustejovsky and Krishnaswamy, 2021).
However, this encoded knowledge is usually hand-
crafted (e.g., in VoxML (Pustejovsky and Krish-
naswamy, 2016)), and difficult to acquire at scale.
Studies have shown that Large Language Mod-
els possess some commonsense world knowledge
and can “guess” the affordances and properties of
many objects, but they cannot reason about the rela-
tionship between these properties and affordances
(Rogers et al., 2020). For example, BERT “knows"
that people can walk into houses, and that houses
are big, but it cannot infer that houses are bigger
than people. It would then seem that if a house was
smaller than a person BERT would still suggest
that it can be walked into.

In this paper we explore the ability of machine
learning methods to learn grasping affordance-
based correspondences between objects based on
their geometries, and based on human annotations
of how objects are grasped for purpose or use. We
then train classifiers on the two datasets and explore
an affine transformation technique a la McNeely-
White et al. (2020) to explore correspondences be-
tween the embedding spaces of the two classifiers.



We find that the two classifier embedding spaces
are not easily mapped using an affine transforma-
tion, and hypothesize that this is because the two
datasets are capturing fundamentally different in-
formation about the object affordances: Gibsonian
affordances vs. telic affordances, and show that
these fall into distinct distributions, making a map-
ping between the spaces difficult.

Section 2 presents related work, including the
MeshCNN method that is core to this research (Sec-
tion 2.1). Section 3 presents our dataset and prepro-
cessing. Section 4 presents our methodology and
results. Section 5 discusses some of the implica-
tions of this finding, and Section 6 concludes with
future research directions.

2 Related Work
Learning to predict object affordances based on
perceptible attributes is important for many use
cases such as autonomous robot learning. There
exist a number of popular human-object interaction
(HOI) datasets for image and video recognition
(e.g., Chao et al., 2015; Chao et al., 2018; Goyal
et al., 2017), and methods that learn object affor-
dances from visual features exist (Fang et al., 2018;
Nagarajan et al., 2019; Xiao et al., 2019), but few at-
tempts have been made to use 3D data like polygo-
nal meshes or point clouds that can allow for direct
access to information such as the structure of the
object to ground other models. Polygonal meshes
explicitly and efficiently capture both shape surface
and topology in detail. High-quality 3D polygonal
mesh data, unlike images, is difficult to acquire
at scale. However, there have been significant re-
cent advances in capturing 3D data or synthesizing
views from a few images, largely based on Neural
Radiance Fields (Yu et al., 2020; Jain et al., 2021;
Lin et al., 2021; Ye et al., 2021), in stylizing a sam-
ple mesh based on a text prompt (Michel et al.,
2021) and in reconstructing high quality polygo-
nal mesh surfaces from acquired 3D point cloud
data (Hanocka et al., 2020a; Metzer et al., 2021).
This suggests that 3D data and polygonal meshes
themselves are suitable for a number of AI tasks.

CNNs have been very successful at many com-
puter vision tasks, because the inductive biases in a
CNN are well-suited to images and the significant
amount of image data available allows for learning
invariant representations. The success of CNNs in
2D perception suggests that they can also be ex-
ploited in learning 3D representations of objects
from images. However, this has proven to be a

challenging task. The limited availability of 3D
data makes it challenging to learn 3D representa-
tions using a CNN, and the additional computation
required to accommodate the additional dimension
often renders the process infeasible. Directly us-
ing the convolution operation on 3D data is also
challenging because of the absence of an implicit
neighborhood and uniformity as in images and non-
Euclidean geometry of 3D data.

2.1 MeshCNN
MeshCNN (Hanocka et al., 2019) is an adaptation
of convolutional neural networks for the analysis of
3D triangular meshes. MeshCNN uses specialized
convolution and pooling operators analogous to the
convolution and pooling operators of conventional
CNNs, thereby importing the benefits of these well
understood models to 3D meshes. These operators
are designed such that they can directly operate on
mesh edges (akin to how conventional CNNs can
operate on pixels) in a task-aware fashion, unlike
previous work on making the convolution operation
intrinsic to the mesh (Masci et al., 2015; Henaff
et al., 2015; Boscaini et al., 2016; Sinha et al., 2016;
Maron et al., 2017), or using a convolution opera-
tion on point cloud-based representations (Qi et al.,
2017; Guerrero et al., 2018; Li et al., 2018), or
work that involved first transforming 3D data into a
regular representation on which a convolution oper-
ator could be applied (Su et al., 2015; Kalogerakis
et al., 2017; Ruizhongtai Qi et al., 2016; Wu et al.,
2015; Brock et al., 2016; Tchapmi et al., 2017).

A convolution operator can be applied on unam-
biguously ordered input features in the neighbor-
hood so that the learned features are invariant. The
conventional image convolution operator can be di-
rectly applied to images because images are repre-
sented as a regular grid with inherent neighborhood,
features and ordering, which is not true for which is
not true for irregular and non-uniform 3D triangu-
lar meshes. To design the convolution operator for
meshes in MeshCNN, the authors define a neigh-
borhood for each edge that the operator operates
on as edges contained in the faces incident on that
edge. The vertices are ordered counter-clockwise.
This ordering is ambiguous, which the authors ad-
dress by defining input features of an edge as a
5-dimensional feature—the dihedral angle, two in-
ner angles and two edge-length ratios between the
edge and the perpendiculars for each face from
the edge. Further, the authors aggregate the four
incident edges that make a ring around the edge



being operated on into two pairs of edges which
have an ambiguity and generate new features by
applying simple symmetric functions like summa-
tion on each pair. Thus, the neighborhood, features
and ordering are defined in a way that a convolu-
tion operator can be applied to the edges and can
learn invariant features. The pooling operation is
defined as the collapse of incident edges to a point
on the edge being operated on. The edges are put
in a priority queue and edges with features having
the smallest norm are pooled first making the pool-
ing operation task-aware. Using these operators,
MeshCNN has demonstrated good performance on
a number of different learning tasks including seg-
mentation and classification (Hanocka et al., 2020b;
Wiersma et al., 2020; Vosylius et al., 2020), includ-
ing using fewer parameters and compute time than
comparable methods. Subsequently, we explore
the ability of MeshCNN on an affordance-based
classification task.

3 Dataset
This section describes our data collection process.
Section 3.1 describes how we collected ground-
truth data from human annotations selecting for
telic affordances. Section 3.2 describes our collec-
tion and preprocessing of object geometries.

We first began by selecting a test set of com-
mon household objects graspable by a single hand.
These objects, all found in a kitchen and there-
fore reminiscent of common problems in this do-
main (e.g., Damen et al. (2018)), include: bottle,
mug, knife, bowl, plate, wine glass, pen, apple, jar,
spoon, fork, glass, teapot, banana, pan.

Figure 1: Bowl being grasped and bowl geometry.

Figure 1[L] shows a bowl being grasped in a
typical fashion. [R] shows a geometry of a bowl
object.

3.1 Human Annotation
We created a survey to elicit the canonical grasp
pose for each object. The survey was posed as
a multiple-choice questionnaire: “Consider how
your hand is posed while grasping each object for
typical use. Then, for each object, select all other
objects which are grasped using a similar hand
pose.” This phrasing, particularly the phrase “for

typical use,” was chosen to elicit the telic affor-
dance for each of these objects. For each object,
annotators could select which of the 15 objects sat-
isfied the question, allowing for multiple objects to
be selected as being grasped similarly to the one in
question.

We had 28 annotators take the survey in total,
resulting in 28 15-dimensional k-hot vectors. Each
object was assumed to be grasped like itself, allow-
ing us to keep indices constant across all objects.
We used standard statistical techniques for iden-
tifying outliers, such as z-score filtering (with a
z-score of 5) and normalization (Rousseeuw and
Hubert, 2011). Because a single outlier can make
the standard deviation large, it is common to use
the median of all absolute deviations from the me-
dian (MAD) as a more robust measure of the scale
(Leys et al., 2013). We computed the Kraemer
kappa reliability score (Kraemer, 1980), to account
for more than 2 annotators and the variable num-
ber of choices each annotation may have made,
resulting in κ ≈ .32, indicating “fair agreement”
according to Landis and Koch (1977).

3.2 Meshes and Preprocessing
For each object, we collected 40 3D meshes (e.g.,
see Figure 1) from public repositories1.

These meshes were all converted to the Wave-
front 3D Object file format (.obj). Following
this, we standardized the varying number of faces
in each mesh to approximately 8,000 by subtrian-
gulation to create additional faces or edge fusion to
remove edges as necessary. Following this process,
each mesh had approximately 15,000 edges.

Following this we used the open-source Mesh-
Lab tool to clean up each mesh by removing is-
lands (faces unconnected to other faces), zero faces
(3 edges bounding a topological one-dimensional
hole), and non-manifold meshes (non-continuous
meshes or meshes violating properties of Euclidean
space at close resolution, such as by having cross-
ing edges). We then visually inspected each mesh
to make sure that this process did not cause the
mesh to be deformed beyond recognition of its
original identity: that is, a cleaned mesh of a bowl
still needed to visually resemble a bowl to a hu-
man observer in order to make valid comparisons
to MeshCNN’s capabilities.

Finally, we validated each mesh with MeshCNN
itself. MeshCNN has been demonstrated with
known benchmark datasets, e.g., the SHREC

1cgtrader.com, turbosquid.com, free3D.com

cgtrader.com
turbosquid.com
free3D.com


dataset (Avola et al., 2018), but when training and
testing on new meshes, there is a chance that the
MeshCNN pooling operation (see Section 2.1) in
one of the early convolutional layers will cause
the resulting feature map equivalent to be non-
manifold when it enters later layers. Therefore
we trained MeshCNN on each mesh for 10 epochs
on a dummy classification task with only 1 class,
but the initial mesh and pooling resolution set to
the same values to be used in the actual classifica-
tion task. We then discarded any mesh that threw
an error due to the aforementioned property of the
pooling operator.

4 Methodology
This section describes our methodology. Sec-
tion 4.1 describes the derivation of grasp classes
from the ground truth annotations. Section 4.2
describes the classifier trained over the human an-
notations, and Section 4.3 describes the training of
the MeshCNN model. Section 4.4 describes the
results of the 2 classifiers. Section 4.5 describes
the linear mapping procedure we used to make the
embedding spaces directly comparable. We focus
on neural network techniques in order to produce
embeddings that can be made directly comparable
using linear transformations, as it is not yet known
whether linear mapping techniques between embed-
dings are applicable to embeddings derived from
other methods like Random Forests.

4.1 Deriving Grasp Classes
In order to assess MeshCNN’s ability to classify
objects according to their graspability, we needed
to organize our ground truth object annotations into
classes according to their grasp poses.

We first summed the 28 vectors for each object
into single vectors for that object. The resulting
matrix can then be treated as a co-occurrence ma-
trix. For each object (i.e., each row), we computed
the Positive Pointwise Mutual Information (PPMI)
with each other object (i.e., each column), accord-
ing to PPMI(a, b) = max

(
ln
(

P (a,b)
P (a)P (b)

)
, 0
)

,
and then used Euclidean distance as a similarity
measure to find the similarity between each object.

We then ordered object pairs based on the com-
puted similarity scores and assigned the objects in
the pairs starting with the most similar to the same
class. For pairs where one object was already as-
signed to a class but the second object was not, we
put the second in the same class. When both ob-
jects in a pair had not yet been assigned to a class,

Figure 2: TSNE plot of object PPMI vectors.

we assigned both to a new class, and repeated until
all the objects were assigned to a grasp class. To
check the validity of this assignment we plotted a
TSNE plot for the aggregated object PPMI vectors
(Figure 2).

Table 1 shows the resulting grasp classes, which
can be denoted by a description of the hand pose.
Following terminology used in occupational ther-
apy (Kamakura et al., 1980), which has since been
adopted by the robotics community (Feix et al.,
2015) Class 0 is a spherical grasp class, holding a
fruit as if for consumption. Class 1 is the similar
cylindrical grasp, a canonical pose when holding
a glass for drinking. Class 2 contains the only ob-
jects in the dataset with “ear” handles joined to the
object at both ends, which both use the hook grasp.
Class 3 contains two objects typically held from
the side or bottom (e.g., cf. Figures 1 and 3), which
use the palmar pinch. Class 4 is a tripod grasp, and
contains objects where the hand is held as if eating
with a spoon or writing with a pen.

Figure 3: Plate being grasped and plate geometry. Bowl
and plate form class 3.

4.2 Human Annotation Classifier
We trained a classifier to classify every vector rep-
resenting an object from every human annotation
into one of the 5 different grasp classes. Because
the grasp classes had different number of objects,
the classes also had different number of training
vectors, making the dataset imbalanced. To cor-



Grasp Class Objects
0 Apple, Banana
1 Bottle, Wine Glass, Glass, Jar
2 Mug, Teapot
3 Bowl, Plate
4 Spoon, Fork, Knife, Pen, Pan

Table 1: The 5 classes derived from the assignment
scheme.

Hyperparameter Value
input size 15
hidden layer size 200
# classes 5
# epochs 60
learning rate 0.2
batch size 46*5
optimizer Adam

Table 2: Hyperparameters for Human Annotation clas-
sifier.

rect this imbalance, we randomly discarded excess
training vectors from each class to achieve a sam-
ple balanced across classes, resulting in 56 training
vectors per class (280 training object vectors to-
tal). We then divided the data into 82% training
and 18% test splits, corresponding to 46 samples
per class in the training set (230 samples total) and
10 samples per class in the test set (50 samples to-
tal). We built an MLP classifier in PyTorch, using
grid search to tune hyperparameters, arriving at the
hyperparameter set shown in Table 2.

4.3 MeshCNN Classifier

To classify the meshes according to grasp class, we
trained an instance of MeshCNN using empirically-
derived hyperparameters (shown in Table 3). flip
edges refers to a data augmentation technique
used by MeshCNN where a percentage of edges
in the mesh are selected randomly and flipped2.
slide verts refers to a similar data augmenta-
tion technique achieved by sliding vertices along
the mesh surface. With the meshes in our dataset,
this was a cause of the problems with non-manifold
intermediate representations that we encountered
during preprocessing (see Section 3.2), and so we
did not use this hyperparameter.

2What is meant by “edge flipping” is well beyond the scope
of this paper but a detailed treatment is given by Cheng and
Jin (2015).

Figure 4: Confusion matrix of the MeshCNN classifier
test output.

4.4 Classifier Results
Using the given architectures and hyperparameter
combinations above, the human annotation classi-
fier achieved a test accuracy of 72%. This result
was validated using a Random Forest classifier as
well. The MeshCNN classifier, despite the exten-
sive preprocessing, achieved only a test accuracy
of 54%. Figure 4 shows the confusion matrix for
the MeshCNN classifier. Here there are only two
classes that achieve high classification accuracy:
Class 0 (the spherical grasp class) and Class 2 (the
hook grasp class). It is observed that topologi-
cally the two objects in each class have an obvious
correspondence: both apples and bananas are topo-
logical spheroids while both teapots and mugs are
topological toroids.

4.5 Linear Mapping Between Embedding
Spaces

The poor performance of MeshCNN on this task
necessarily raised questions about what the network
was learning in this case. MeshCNN has advertised
effectiveness on related tasks, such as classifying
whether a vase has a handle (Hanocka et al., 2019)
using similar data sizes, which made the relative
difficulty of the grasp class task curious. In ad-
dition, the comparatively better but still middling
performance of the classifier over the human an-
notations, combined with the relatively low agree-
ment between annotators suggested that different
humans use different heuristics when assessing the
telic qualities of objects.

Previous research (McNeely-White et al., 2020)
into the properties of embedding spaces has demon-



Hyperparameter Value
pool res 15000, 15000, 15000, 15000
# conv filters 32, 64, 128, 128
# neurons in FC layer 200
normalization group
# resnet blocks 1
flip edges 0.2
slide vertices 0
# augmentations 20
# epochs with initial LR 100
# epochs with LR decay 50
# input edges 15600
batch size 1
optimizer Adam

Table 3: Hyperparameters for MeshCNN.

strated that, in closed-set tasks where a fixed set of
final-layer labels is shared between two networks
A and B, some level of interchangeability is in fact
expected, up to a matrix MA→B ∈ RdA ×RdB that
minimizes the distance between paired points in
RdA × RdB feature space that correspond to the
same label. In a geometric sense, this is equiv-
alent to asking, given two objects A and B, are
they likely to be the “same” when deformed un-
der, at most, a warping or affine transformation?
Here, however, the objects are not meshes a la
a MeshCNN object type classification task, but
points in high dimensional vector space. If the
grasp classes we derived can in fact be repre-
sented as roughly equivalent subspaces in both the
human-annotation MLP embedding space and the
MeshCNN embedding space, then the poor test per-
formance of MeshCNN could simply be attributed
to overfitting to the training data, so we set out to
evaluate if this was in fact the case.

The hypothesis here was that if the MeshCNN
embeddings can be transformed into the MLP em-
bedding space such that the R2 coefficient of deter-
mination is high enough for the training pairs, then
poor performance can be attributed to overfitting
to the training data. If not, then the more likely
explanation is that the two representation spaces
are underlyingly different due to fundamental dif-
ferences in what the training data itself represents.

We retrieved all 200-dimensional embeddings
for each input (training and test) from each of the
two classifiers. Because we now wanted to evaluate
equivalency between the trained embedding spaces,
we use all data, including the embeddings represent-
ing the training inputs to the respective classifiers,

to compute the mapping, in order to minimize the
distance between points that each classifier “knows”
belong to the correct class. Because there were 350
training inputs to the MeshCNN classifier and only
280 inputs to the human-annotation classifier, we
discarded 70 randomly selected extra inputs until
we had 1-to-1 paired embeddings representing 56
pairs each per grasp class. We divided these into the
same 82:18 train/test split used in the MLP classifi-
cation, resulting in 46 train and 10 test embedding
vectors per grasp class.

To compute our linear mapping, we used an
MLP regressor with no hidden layer (i.e., a multi-
variate linear model) as an affine mapping from one
embedding space to another. The MeshCNN em-
beddings were the inputs and the MLP embeddings,
as the classifier with higher accuracy and there-
fore presumably better-defined subspaces, serve
as the outputs. This process maps the individual
MeshCNN representations as closely as possible
to their MLP-space equivalents. Since all embed-
dings come from a network whose final layer is a
5-node softmax activation representing the 5 grasp
classes, this attempts to align the embedding spaces
in which the grasp classes are represented by the
respective models as closely as possible.

4.5.1 Linear Mapping Results
The regressor process was largely unsuccessful in
aligning the two embedding spaces. R2 = 0.06
on the training set and when the test embeddings
were premultiplied by the computed mapping ma-
trix, R2 = 0.02. Even after mapping, the two
embedding spaces remained almost entirely orthog-
onal. indicating that the two classifiers had learned
fundamentally different representations, and that



the poor test performance of MeshCNN was most
likely not due to overfitting on the training data
(more on this in Section 5).

Figure 5 shows a 3D TSNE plot of the vectors
extracted from the two embedding spaces after the
MeshCNN embeddings were mapped into the MLP
embedding space.

Figure 5: 3D TSNE plot of all embedding vectors, col-
ored by original embedding space.

5 Discussion
Recall that the ground-truth grasp classes were de-
rived from human annotations of objects that were
designed to specifically elicit judgments on the use
or purpose of the object, i.e., the telic affordance
(Section 3.1). 3D meshes alone, however, capture
none of this information. There may be some geo-
metric correspondences that correlate with typical
purpose-denoting grasps, such as handles, but the
geometry itself, being a representation of structure,
is naturally Gibsonian.

In Figure 5, we see two almost completely sepa-
rable regions. If the MeshCNN classifer had actu-
ally overfitted to its training data, we would expect
to see far more of the MeshCNN embeddings—the
pink points—map closely to a subset of the human
annotation embeddings—the blue points—because
that is the same data that the output labels were
derived from. Instead, the MeshCNN embeddings
were mapped into the MLP embedding space (as
seen by the fact that the entire convex hull of the
MLP embeddings, including outliers at the top of
the plot, encompasses nearly all the MeshCNN em-
beddings), but remain neatly separated from the
bulk of the MLP embeddings, including the paired
outputs that the input embeddings were trained
against.

This suggests that MeshCNN learned certain rep-

resentations of Gibsonian affordances but, being
trained against telic affordance labels, did not have
the information available in the structure of the
mesh itself to learn appropriate Gibsonian-telic cor-
relations. Meanwhile, the MLP trained over human
annotations of telic affordances learned different
information. We surmise, therefore, that Gibsonian
and telic affordances represent related but funda-
mentally different ways of interpreting the same
sets of objects.

This can be further confirmed by examining the
nearest neighbors for specific objects within each
embedding subspace.

Figure 6 shows the 55 nearest neighbors3 of a
representative bowl object (a member of grasp class
3) in each of the respective embedding spaces. In
the bottom cluster, marked with circles, showing
the data from the human annotation MLP embed-
ding space, we see that the vast majority of nearest
neighbor objects are either other bowls, or plates
(the other member of grasp class 3). There are a few
other neighbors belonging to other grasp classes,
which we attribute to the disagreement the human
annotators themselves showed, but these are over-
whelmingly outnumbered by neighbors that belong
the correct cluster.

Figure 6: Nearest neighbors of representative bowl ob-
ject across both embedding types.

Meanwhile in the top cluster, marked by squares,
the nearest neighbors of a representative bowl ob-
ject are much more diverse, roughly equally di-
vided between more bowls and plates but also bot-
tle, jars, and even teapots.

Nevertheless, when grasped for a typical use or
purpose as the human annotators were asked (e.g.,
drinking from a bottle vs. filling a bowl), the actual

3Because there are 56 objects in a class when training and
testing sets are put together.



hand pose is markedly different (e.g., see Figure 7).

Figure 7: Bottle
being grasped.

Figure 8 shows nearest
neighbors of a mug object,
which is a member of class 2,
one of the classes on which
MeshCNN actually performed
well. Most neighbors here,
among both types of embed-
dings, are mugs and teapots
(the other class 2 member). In

fact, among the nearest neighbors of the MeshCNN
embeddings are MLP embeddings of teapots and
mugs, indicating that MeshCNN did learn a repre-
sentation of the handle geometry correlated with
that type of grasp.

Figure 8: Nearest neighbors of representative mug ob-
ject across both embedding types.

Grasping is typically a Gibsonian affordance,
based on object structure, as would be encoded in a
geometric mesh representation, but grasping for a
particular use or purpose implies a telic affordance.
Encoding information this way, as our human anno-
tations did, appears to result in a markedly different
representation from the geometric representation
learned by MeshCNN. Even with the same output
labels, models trained on this differing data do not
appear to be learning equivalent representations
that can be correlated to relationships between Gib-
sonian and telic affordances.

5.1 Implications for Action Recognition
An affordance is not just any action taken with an
object (i.e., not every human-object interaction ex-
ploits the object’s affordances). An affordance is
a distinct action possibility that an object allows
an agent to take, that is more particular to that
object than would arise by chance. In particular,
for human-object interaction, the human manipu-

lators, i.e., the hands, play a critical role in deter-
mining how an object is used. Therefore simple
object detection is not enough, and false positives
on human-object interaction detection tasks are of-
ten the result of detecting the presence of an object
in an image when it is not being held for typical
use or purpose, or in a telic-enabling fashion (e.g.,
see the discussion of false positives in Gkioxari
et al. (2018).) The ability to recognize and detect
Gibsonian vs. telic affordances and, critically, the
difference between the two, will be an important
point in future successes in activity recognition and
evaluation of human-object interaction tasks.

6 Conclusion and Future Work
In this paper we hope to have demonstrated that
an embodied task like affordance classification
is still difficult for even specialized models like
MeshCNN that can operate directly over 3D data.
We have shown that the problem becomes more
difficult if affordances are characterized by a
telic/Gibsonian distinction and that even a single
afforded behavior such as grasping, when thought
about in telic terms, carries quite different infor-
mation from the same affordance viewed from a
purely Gibsonian perspective. A broader implica-
tion is that Gibsonian and telic affordances may
carry fundamentally different information about an
object. Shape, the correlate for Gibsonian affor-
dances encoded in geometries, underspecifies use,
or telic affordances,

One specific angle for future work is examining
the possibility of getting telic affordance informa-
tion out of a mesh, which would make both Gibso-
nian and telic affordances encodable using meshes.
When comparing our human annotations to the 3D
mesh, one piece of information explicitly singled
out by the human annotations was the pose of the
hand. This information was nowhere to be found
in the 3D meshes. Think about a cup on the table.
It can potentially afford anything such as drinking,
pushing, etc. The final action cannot be predicted,
e.g., by an HOI classifier, unless coupled with a
grasp pose. Methods like ContactOpt (Grady et al.,
2021) and HandsFormer (Hampali et al., 2021) of-
fer the possibility of fitting a 3D mesh of a hand
to an object in either image or mesh format. Re-
trieving either the mesh or the joints of the fitted
hand may potentially provide mesh- or mesh-like
3D information that could be provided to a method
like MeshCNN to increase performance on tasks
like affordance classification.
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